Operator-weighted composition operators on vector-valued Bloch spaces
نویسندگان
چکیده
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملWeighted composition operators from Bergman-type spaces into Bloch spaces
Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...
متن کاملWeighted Composition Operators on Weighted Spaces of Vector-valued Analytic Functions
Let V be an arbitrary system of weights on an open connected subset G of CN (N ≥ 1) and let B (E) be the Banach algebra of all bounded linear operators on a Banach space E. Let HVb (G, E) and HV0 (G, E) be the weighted locally convex spaces of vector-valued analytic functions. In this paper, we characterize self-analytic mappings φ : G → G and operator-valued analytic mappings Ψ : G → B (E) whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2018
ISSN: 1846-3886
DOI: 10.7153/oam-2018-12-65